• Skip to Content
  • Skip to Main Navigation
  • Skip to Search

Indiana University Bloomington Indiana University Bloomington IU Bloomington

Open Search Menu

The College of Arts & Sciences

Department of Biology

  • Home
  • About
    • Message from the Chair
    • Faculty
    • Research Associates & Postdocs
    • Staff
    • Graduate Students
    • Administration
    • Offices & Centers
    • Diversity & Inclusion
    • Outreach
    • History
    • About Bloomington
  • Undergraduate
    • Biology
    • Biotechnology
    • Microbiology
    • Molecular Life Sciences
    • Research & Teaching Opportunities
    • Honors Program
    • Advising
    • Awards & Scholarships
    • Student Experience
    • Graduate & Professional Program Preparation
    • Career Preparation
  • Graduate
    • Evolution, Ecology, and Behavior Ph.D.
    • Genome, Cell, and Developmental Biology Ph.D.
    • Microbiology Ph.D.
    • Biotechnology M.S.
    • Multidisciplinary & Affiliated Programs
    • Advising
    • Financial Support
    • Awards & Fellowships
    • Life Assistance
    • Career Preparation
    • Alumni Career Spotlights
    • How to Apply
  • Research
    • Research Faculty
    • Associated Research Faculty
    • Research Strengths
    • Centers, Instrumentation, & Resources
    • Faculty Awards
  • News & Events
    • News
    • Events Calendar
    • Seminars
    • Named Lectures
    • Discussion Groups & Journal Clubs
    • Annual GCDB Retreat
    • Annual Microbiology Retreat
    • Newsletters
  • Alumni & Giving
  • Search
  • Contact
  • Student Portal
  • Donate
  • News
  • Events Calendar
  • Seminars
  • Named Lectures
  • Discussion Groups & Journal Clubs
  • Annual GCDB Retreat
  • Annual Microbiology Retreat
  • Newsletters
  • Home
  • News & Events
  • News
  • 2019 News
  • DNA-reeling bacteria yield new insight on how superbugs acquire drug resistance

DNA-reeling bacteria yield new insight on how superbugs acquire drug resistance

By: Kevin Fryling, IU Communications

Monday, October 21, 2019

A bacterium retracts its pili, reeling in a piece of DNA in the environment.
A bacterium and its pili. Image courtesy the Dalia Lab, Indiana University

A new imaging method invented at IU leads to a discovery about how bacteria use thin hair-like surface appendages called pili for 'natural transformation.'

A new study from Indiana University has revealed a previously unknown role a protein plays in helping bacteria reel in DNA in their environment -- like a fisherman pulling up a catch from the ocean.

The discovery was made possible by a new imaging method invented at IU that let scientists see for the first time how bacteria use their long and mobile appendages -- called pili -- to bind to, or "harpoon," DNA in the environment. The new study, reported Oct. 18 in the journal PLOS Genetics, focuses on how they reel their catch back in.

By revealing the mechanisms involved in this process, the study's authors said the results may help hasten work on new ways to stop bacterial infection.

"The issue of antibiotic resistance is very relevant to this work since the ability of pili to bind to, and 'reel in,' DNA is one of the major ways that bacteria evolve to thwart existing drugs," said Ankur Dalia, an assistant professor in the IU Bloomington College of Arts and Sciences' Department of Biology, who is senior author on the study. "An improved understanding of this 'reeling' activity can help inform strategies to stop it."

The act of gobbling up and incorporating genetic material from the environment -- known as natural transformation -- is an evolutionary process by which bacteria incorporate specific traits from other microorganisms, including genes that convey antibiotic resistance.

Clockwise: A bacterium retracts its pili, reeling in a piece of DNA in the environment.
Clockwise: A bacterium retracts its pili, reeling in a piece of DNA in the environment. This action facilitates "natural transformation," a process by which bacterium acquire new genetic traits, including antibiotic resistance. Image courtesy the Dalia Lab, Indiana University
GIF: Watch a bacterium 'reel in' a piece of DNA in the environment

The need for new methods to stop bacterial infection is growing since overuse of existing antibiotics, which speeds how quickly infectious organisms evolve to outsmart these drugs, is causing the world to quickly run out of effective treatments. By 2050, it's estimated that 10 million people could die each year from antimicrobial resistance.

Jennifer Chlebek poses at her lab bench.
Jennifer Chlebek. Photo by Terri Greene, Indiana University

Although they may look like tiny arms under a microscope, Dalia said, pili are actually more akin to an erector set that is quickly put together and torn down over and over again. Each "piece" in the structure is a protein sub-unit called the major pilin that assembles into a filament called the pilus fiber.

"There are two main motors that had previously been implicated in this polymerization and depolymerization process," added Jennifer Chlebek, a Ph.D. student in Dalia's lab, who led the study. "In this study, we show that there is a third motor involved in the depolymerization process, and we start to unravel how it works."

The two previously characterized "motors" that control the pili's activity are the proteins PilB, which constructs the pili, and PilT, which deconstructs it. These motors run by utilizing ATP, a source of cellular energy. In this study, IU researchers showed that stopping this process, which switches off the power to PilT, does not prevent the retraction of the pili, as previously thought.

Instead, they found that a third motor protein, called PilU, can power pilus retraction even if PilT is inactive, although this retraction occurs about five times more slowly. The researchers also found that switching off power to both retraction proteins slows the retraction process to a painstaking rate of 50 times slower. An unaltered pilus retracts at a rate of one-fifth of a micron per second.

Moreover, the study found that switching off PilU affects the strength of pilus retraction, which was measured by collaborators at Brooklyn College. The study also showed that PilU and PilT do not form a "hybrid" motor, but instead that these two independent motors somehow coordinate with one another to mediate pilus retraction.

"While the PilU protein had previously been implicated in pilus activity, its exact role has been difficult to determine because cells that lack this protein generally only have very subtle effects," Chlebek added. "Our observation that PilU can support pilus retraction in a mutant strain, when we threw a wrench in the PilT motor, was the key to unlocking how this protein aids in the depolymerization of pili."

Ankur Dalia in his lab.
Ankur Dalia. Photo by James Brosher, Indiana University

The ability to precisely measure the pili's retraction rate -- and therefore precisely measure the impact of altering the proteins that affect this process -- was made possible by the ability to see pili under a microscope, which was not possible until the breakthrough imaging method invented at IU.

"The ability to fluorescently dye the pili was huge," Dalia said. "It allowed us to not only see the pili's activity but also measure it in ways which simply would not have been possible in the past."

Next, Chlebek aims to learn more about how the pili still retract when the power is switched off to both retraction motors, as well as explore how these insights could apply to understanding pili activity in other strains of bacteria.

This research was supported in part by the National Institutes of Health. Additional IU authors on the study were Brittany Herrin and Hannah Hughes, both Ph.D. students; Triana Dalia, a research associate in the Department of Biology; and Joseph Che-Yen Wang, an assistant scientist at the IU Electron Microscopy Center. The researchers at Brooklyn College were Aleksandra S. Ratkiewicz, Rasman Rayyan and Nicolas Biais.

This article is republished from Indiana University's News at IU Bloomington Science and Technology.

Read the original article

  • Faculty + Staff Intranet

Department of Biology social media channels

  • Twitter
  • Facebook
  • College of Arts & Sciences
  • Department of Biology

The College of Arts & Sciences

Indiana University

Copyright © 2025 The Trustees of Indiana University

Accessibility | College Scorecard | Privacy Notice

  • About
    • Message from the Chair
    • Faculty
      • Tenured + Tenure-Track Faculty
      • Teaching Faculty
      • Research Scientists
      • Faculty Emeriti
      • Faculty Affiliates
    • Research Associates & Postdocs
    • Staff
    • Graduate Students
    • Administration
    • Offices & Centers
    • Diversity & Inclusion
      • DEI Committee
    • Outreach
      • K-12 Educators
        • Biology Summer Institute
      • K-12 Students
        • Holland Summer Science Programs
          • Jim Holland Summer Enrichment Program in Biology (SEP)
          • Jim Holland Summer Science Research Program (SSRP)
          • Jim Holland Research Initiative in STEM Education (RISE)
      • Lessons
      • Outreach Activities
      • Outreach Coordinators
    • History
      • Faculty Emeriti
      • Historical Materials
    • About Bloomington
  • Undergraduate
    • Biology
      • Biology Learning Goals
      • Biology B.S.
        • Areas of Concentration
          • Biology of Disease
          • Cell Biology and Molecular Genetics
          • Integrative and Organismal Biology
      • Biology B.A.
      • Biology Minor
    • Biotechnology
      • Biotechnology Learning Goals
        • Biotechnology BS Learning Goals
        • Biotechnology BA Learning Goals
        • Biotechnology Minor Learning Goals
      • Program Design & Resources
      • Biotechnology B.S.
      • Biotechnology B.A.
      • Biotechnology B.S./M.S.
      • Biotechnology Minor
      • Demand and Employment Analysis
    • Microbiology
      • Microbiology B.S.
      • Microbiology B.A.
      • Microbiology Minor
    • Molecular Life Sciences
    • Research & Teaching Opportunities
      • Research Programs
      • Biology X490 Independent Study
      • Undergraduate Teaching Assistant
    • Honors Program
    • Advising
    • Awards & Scholarships
    • Student Experience
    • Graduate & Professional Program Preparation
    • Career Preparation
  • Graduate
    • Evolution, Ecology, and Behavior Ph.D.
      • Steps to become EEB student
      • Curriculum
      • EEB Faculty
    • Genome, Cell, and Developmental Biology Ph.D.
      • Steps to become GCDB student
      • Curriculum
      • GCDB Faculty
    • Microbiology Ph.D.
      • Steps to become Microbiology student
      • Curriculum
      • Microbiology Faculty
    • Biotechnology M.S.
      • Program Plan + Curriculum
      • Financial Support
      • Biotechnology Faculty
    • Multidisciplinary & Affiliated Programs
    • Advising
    • Financial Support
    • Awards & Fellowships
    • Life Assistance
    • Career Preparation
    • Alumni Career Spotlights
    • How to Apply
  • Research
    • Research Faculty
    • Associated Research Faculty
    • Research Strengths
      • Behavior
      • Chromatin, chromosomes, and genome integrity
      • Developmental mechanisms and regulation in eukaryotic systems
      • Ecology
      • Eukaryotic cell biology, cytoskeleton, and signaling
      • Evolution
      • Genomics and bioinformatics
      • Microbial cell biology and environmental responses
      • Microbial interactions and pathogenesis
      • Plant molecular biology
      • Virology
    • Centers, Instrumentation, & Resources
      • Drosophila Research Resources
    • Faculty Awards
  • News & Events
    • News
    • Events Calendar
    • Seminars
    • Named Lectures
      • Distinguished Alumni Award Lecture
      • James P. Holland Lecture Series
      • Carlos O. Miller Lecture Series
      • Hermann J. Muller Award Lecture Series
      • Norman R. Pace Lecture Series
      • Tracy M. Sonneborn Lecture Series
      • Joan Wood Lecture Series
    • Discussion Groups & Journal Clubs
    • Annual GCDB Retreat
    • Annual Microbiology Retreat
      • Micro-lympics
      • Registration
    • Newsletters
      • BioNews Fall 2022
      • BioNews Archive
  • Alumni & Giving
  • Contact
  • Student Portal
    • Undergraduate
      • Biology
        • Biology B.S.
        • Biology B.A.
        • Biology Minor
      • Biotechnology
        • Biotechnology B.S.
        • Biotechnology B.A.
        • Biotechnology B.S./M.S.
        • Biotechnology Minor
      • Microbiology
        • Microbiology B.S.
        • Microbiology B.A.
        • Microbiology Minor
      • Molecular Life Sciences
      • Courses
        • Biology Exemption Exams
        • Course Scheduling
        • Course Evaluations
        • Biology X490 Independent Study
        • FAQs
      • Advising
      • Research Opportunities
      • Teaching Assistants
      • Honors Program
        • Eligibility
        • Honors Courses
        • Honors Thesis
        • Honors Faculty Advisors
        • How to Apply
      • Internships
    • Graduate
      • Evolution, Ecology, and Behavior Ph.D.
      • Genome, Cell, and Developmental Biology Ph.D.
      • Microbiology Ph.D.
      • Biotechnology M.S.
      • Multidisciplinary and Affiliated Programs
      • Courses
      • Transfer credits
      • Awards + funding
      • Financial Support
      • Teaching Support
      • Dissertation & Thesis Support
      • Services & Outreach
      • Submit News to Biology
      • Facilities & Resources
        • Computing Services
        • Constant Temperature Rooms
        • Dry Ice
        • Lactation Room
        • Room Reservations
          • All Rooms
          • Biology Bldg. 123
          • Biology Bldg. 248
          • Biology Bldg. A310
          • Biology Bldg. 422
          • Biology Bldg. 510
          • Myers Hall 115
          • Myers Hall 140
          • Myers Hall 209
          • Myers Hall 311
      • Student Academic Appointments
      • Bias incident reporting
      • Title IX incident reporting
    • Seminars
    • Ombudsperson
  • Donate

The College of Arts & Sciences