• Skip to Content
  • Skip to Main Navigation
  • Skip to Search

Indiana University Bloomington Indiana University Bloomington IU Bloomington

Open Search Menu

The College of Arts & Sciences

Department of Biology

  • Home
  • About
    • Message from the Chair
    • Faculty
    • Research Associates & Postdocs
    • Staff
    • Graduate Students
    • Administration
    • Offices & Centers
    • Diversity & Inclusion
    • Outreach
    • History
    • About Bloomington
  • Undergraduate
    • Biology
    • Biotechnology
    • Microbiology
    • Molecular Life Sciences
    • Research & Teaching Opportunities
    • Honors Program
    • Advising
    • Awards & Scholarships
    • Student Experience
    • Graduate & Professional Program Preparation
    • Career Preparation
  • Graduate
    • Evolution, Ecology, and Behavior Ph.D.
    • Genome, Cell, and Developmental Biology Ph.D.
    • Microbiology Ph.D.
    • Biotechnology M.S.
    • Multidisciplinary & Affiliated Programs
    • Advising
    • Financial Support
    • Awards & Fellowships
    • Life Assistance
    • Career Preparation
    • Alumni Career Spotlights
    • How to Apply
  • Research
    • Research Faculty
    • Associated Research Faculty
    • Research Strengths
    • Centers, Instrumentation, & Resources
    • Faculty Awards
  • News & Events
    • News
    • Events Calendar
    • Seminars
    • Named Lectures
    • Discussion Groups & Journal Clubs
    • Annual GCDB Retreat
    • Annual Microbiology Retreat
    • Newsletters
  • Alumni & Giving
  • Search
  • Contact
  • Student Portal
  • Donate
  • News
  • Events Calendar
  • Seminars
  • Named Lectures
  • Discussion Groups & Journal Clubs
  • Annual GCDB Retreat
  • Annual Microbiology Retreat
  • Newsletters
  • Home
  • News & Events
  • News
  • 2019 News
  • Dung beetle discovery revises understanding of how nature innovates

Dung beetle discovery revises understanding of how nature innovates

By: Kevin Fryling, Senior Communications Specialist/Content Strategist, IU Studios

Thursday, November 21, 2019

Cover of Nov. 22, 2019, Science journal, featuring Beetle Horns article and photo from Moczek Lab.
Study from Armin Moczek's lab is the cover article for the prestigious journal Science.

Realization that thoracic horns are built by the same gene network as wings reframes traditional ideas about emergence of 'new' traits.

When studying how organisms evolve, biologists consider most traits as derived from some earlier version already present in their ancestors. Only a very few traits are regarded as truly "novel."

Insects were wingless, then winged. Animals were blind, then had eyes.

And in biology textbooks, novelty has a strict definition: It must have no relationship to any structure found in an ancestor and no relationship to any other body part elsewhere in the organism.

By this definition, a dolphin's pectoral fins are not a novelty because they are modified forelimbs that already existed. Some experts argue that this creates a problem since it means that novelty must seemingly arise from nothing.

Now evidence has emerged—in a study published Nov. 21 in the journal Science—that better illuminates how new traits can evolve. And this evidence has come from an unexpected source: the small yet charismatic dung beetle.

The left image shows thoracic horns in a typical dung beetle. The right image shows the effect of reducing the expression of a gene in the wing gene network in beetles, which transforms thoracic horns into a third set of wings.
The left image shows thoracic horns in a typical dung beetle. The right image shows the effect of reducing the expression of a gene in the wing gene network in beetles, which transforms thoracic horns into a third set of wings. Image courtesy Armin Moczek, Indiana University

"Dung beetles are fascinating creatures," said Armin Moczek, the study's senior author and a professor in the Indiana University Bloomington College of Arts and Sciences' Department of Biology. Among their many qualities, one structure has placed them at the forefront of discussions about novelty among researchers: their thoracic horn.

Regarded as a textbook example of an evolutionary novelty, the thoracic horn is unique to horned beetles and appears to have no relationship to any other structure in the animal.

This view is now changing thanks to the IU-led study, featured on the journal's cover, which provides evidence that the formation of the thoracic horn is instructed by the same core network of genes that led to the evolution of insect wings: flight structures that exist on neighboring thoracic segments.

In fact, this ancient gene network predates not just wings and horns; it already existed before there were insects, and in every segment along the entire body.

An illustration of the evolutionary origin of horns and wings, from arthropods to insects. The second and third thoracic sections, in green, evolved into the fore and hind wings of modern insects, respectively. By contrast, the first thoracic segment, in blue, facilitated the evolution of diverse innovations, such as horns in the scarab beetle family, which include dung beetles.
An illustration of the evolutionary origin of horns and wings, from arthropods to insects. The second and third thoracic sections, in green, evolved into the fore and hind wings of modern insects, respectively. By contrast, the first thoracic segment, in blue, facilitated the evolution of diverse innovations, such as horns in the scarab beetle family, which include dung beetles. Image by David Linz, Indiana University

"This work forces us to rethink what we mean by 'novelty,'" Moczek said. "Each insect segment possesses this gene network, and as such, it is an ancient feature of their makeup. Yet, what each segment does with this network is so strikingly variable that it can yield traits that on the surface seem to have nothing in common, like wings and horns."

To conduct the study, Moczek, along with lead authors Yonggang Hu and David M. Linz, knocked down various genes in this "wing gene network" in three species of beetle: Onthophagus sagittarius, O. taurus, O. binodis. In all three species, the researchers were surprised to find that deactivation of genes in the network significantly affected the formation not just of wings but of thoracic horns, causing them to be reduced or completely absent.

They also showed that they could manipulate other genes and force the horns to transform into "ectopic" wings—or extra wings on the wrong part of the body—which provided additional evidence that thoracic horns and wings were interchangeable, alternative outputs of the same gene network.

This work also extends beyond just dung beetles and their thoracic horns.

Armin Moczek in his lab.
Armin Moczek. Photo by James Brosher, Indiana University

"This body segment of insects, the first thoracic segment, is what we call a 'hotspot' of morphological innovation in insects," Moczek said. "It harbors a lot of really diverse morphological features: horns in beetles, helmets in treehoppers, lateral projects of lace bugs and many more.

"This new evidence is profound since it suggests that all of this vast diversity, all these novelties, could in fact be enabled by a single gene network that was used millions of years ago to form the flight wings on other body segments."

Hu, Linz and Moczek added that these results contribute to a growing call to re-examine the usefulness of defining morphological novelty as the absence of relatedness to other structures. Rather, this work suggests that novelty can emerge through such relatedness—and accordingly, textbook definitions of what constitutes novelty may need to be redefined.

This research was supported by the National Science Foundation and John Templeton Foundation.

This article is republished from Indiana University's News at IU Bloomington Science and Technology.

Read the original article

  • Faculty + Staff Intranet

Department of Biology social media channels

  • Twitter
  • Facebook
  • College of Arts & Sciences
  • Department of Biology

The College of Arts & Sciences

Indiana University

Copyright © 2025 The Trustees of Indiana University

Accessibility | College Scorecard | Privacy Notice

  • About
    • Message from the Chair
    • Faculty
      • Tenured + Tenure-Track Faculty
      • Teaching Faculty
      • Research Scientists
      • Faculty Emeriti
      • Faculty Affiliates
    • Research Associates & Postdocs
    • Staff
    • Graduate Students
    • Administration
    • Offices & Centers
    • Diversity & Inclusion
      • DEI Committee
    • Outreach
      • K-12 Educators
        • Biology Summer Institute
      • K-12 Students
        • Holland Summer Science Programs
          • Jim Holland Summer Enrichment Program in Biology (SEP)
          • Jim Holland Summer Science Research Program (SSRP)
          • Jim Holland Research Initiative in STEM Education (RISE)
      • Lessons
      • Outreach Activities
      • Outreach Coordinators
    • History
      • Faculty Emeriti
      • Historical Materials
    • About Bloomington
  • Undergraduate
    • Biology
      • Biology Learning Goals
      • Biology B.S.
        • Areas of Concentration
          • Biology of Disease
          • Cell Biology and Molecular Genetics
          • Integrative and Organismal Biology
      • Biology B.A.
      • Biology Minor
    • Biotechnology
      • Biotechnology Learning Goals
        • Biotechnology BS Learning Goals
        • Biotechnology BA Learning Goals
        • Biotechnology Minor Learning Goals
      • Program Design & Resources
      • Biotechnology B.S.
      • Biotechnology B.A.
      • Biotechnology B.S./M.S.
      • Biotechnology Minor
      • Demand and Employment Analysis
    • Microbiology
      • Microbiology B.S.
      • Microbiology B.A.
      • Microbiology Minor
    • Molecular Life Sciences
    • Research & Teaching Opportunities
      • Research Programs
      • Biology X490 Independent Study
      • Undergraduate Teaching Assistant
    • Honors Program
    • Advising
    • Awards & Scholarships
    • Student Experience
    • Graduate & Professional Program Preparation
    • Career Preparation
  • Graduate
    • Evolution, Ecology, and Behavior Ph.D.
      • Steps to become EEB student
      • Curriculum
      • EEB Faculty
    • Genome, Cell, and Developmental Biology Ph.D.
      • Steps to become GCDB student
      • Curriculum
      • GCDB Faculty
    • Microbiology Ph.D.
      • Steps to become Microbiology student
      • Curriculum
      • Microbiology Faculty
    • Biotechnology M.S.
      • Program Plan + Curriculum
      • Financial Support
      • Biotechnology Faculty
    • Multidisciplinary & Affiliated Programs
    • Advising
    • Financial Support
    • Awards & Fellowships
    • Life Assistance
    • Career Preparation
    • Alumni Career Spotlights
    • How to Apply
  • Research
    • Research Faculty
    • Associated Research Faculty
    • Research Strengths
      • Behavior
      • Chromatin, chromosomes, and genome integrity
      • Developmental mechanisms and regulation in eukaryotic systems
      • Ecology
      • Eukaryotic cell biology, cytoskeleton, and signaling
      • Evolution
      • Genomics and bioinformatics
      • Microbial cell biology and environmental responses
      • Microbial interactions and pathogenesis
      • Plant molecular biology
      • Virology
    • Centers, Instrumentation, & Resources
      • Drosophila Research Resources
    • Faculty Awards
  • News & Events
    • News
    • Events Calendar
    • Seminars
    • Named Lectures
      • Distinguished Alumni Award Lecture
      • James P. Holland Lecture Series
      • Carlos O. Miller Lecture Series
      • Hermann J. Muller Award Lecture Series
      • Norman R. Pace Lecture Series
      • Tracy M. Sonneborn Lecture Series
      • Joan Wood Lecture Series
    • Discussion Groups & Journal Clubs
    • Annual GCDB Retreat
    • Annual Microbiology Retreat
      • Micro-lympics
      • Registration
    • Newsletters
      • BioNews Fall 2022
      • BioNews Archive
  • Alumni & Giving
  • Contact
  • Student Portal
    • Undergraduate
      • Biology
        • Biology B.S.
        • Biology B.A.
        • Biology Minor
      • Biotechnology
        • Biotechnology B.S.
        • Biotechnology B.A.
        • Biotechnology B.S./M.S.
        • Biotechnology Minor
      • Microbiology
        • Microbiology B.S.
        • Microbiology B.A.
        • Microbiology Minor
      • Molecular Life Sciences
      • Courses
        • Biology Exemption Exams
        • Course Scheduling
        • Course Evaluations
        • Biology X490 Independent Study
        • FAQs
      • Advising
      • Research Opportunities
      • Teaching Assistants
      • Honors Program
        • Eligibility
        • Honors Courses
        • Honors Thesis
        • Honors Faculty Advisors
        • How to Apply
      • Internships
    • Graduate
      • Evolution, Ecology, and Behavior Ph.D.
      • Genome, Cell, and Developmental Biology Ph.D.
      • Microbiology Ph.D.
      • Biotechnology M.S.
      • Multidisciplinary and Affiliated Programs
      • Courses
      • Transfer credits
      • Awards + funding
      • Financial Support
      • Teaching Support
      • Dissertation & Thesis Support
      • Services & Outreach
      • Submit News to Biology
      • Facilities & Resources
        • Computing Services
        • Constant Temperature Rooms
        • Dry Ice
        • Lactation Room
        • Room Reservations
          • All Rooms
          • Biology Bldg. 123
          • Biology Bldg. 248
          • Biology Bldg. A310
          • Biology Bldg. 422
          • Biology Bldg. 510
          • Myers Hall 115
          • Myers Hall 140
          • Myers Hall 209
          • Myers Hall 311
      • Student Academic Appointments
      • Bias incident reporting
      • Title IX incident reporting
    • Seminars
    • Ombudsperson
  • Donate

The College of Arts & Sciences