• Skip to Content
  • Skip to Main Navigation
  • Skip to Search

Indiana University Bloomington Indiana University Bloomington IU Bloomington

Open Search Menu

The College of Arts & Sciences

Department of Biology

  • Home
  • About
    • Message from the Chair
    • Faculty
    • Research Associates & Postdocs
    • Staff
    • Graduate Students
    • Administration
    • Offices & Centers
    • Diversity & Inclusion
    • Outreach
    • History
    • About Bloomington
  • Undergraduate
    • Biology
    • Biotechnology
    • Microbiology
    • Molecular Life Sciences
    • Research & Teaching Opportunities
    • Honors Program
    • Advising
    • Awards & Scholarships
    • Student Experience
    • Graduate & Professional Program Preparation
    • Career Preparation
  • Graduate
    • Evolution, Ecology, and Behavior Ph.D.
    • Genome, Cell, and Developmental Biology Ph.D.
    • Microbiology Ph.D.
    • Biotechnology M.S.
    • Multidisciplinary & Affiliated Programs
    • Advising
    • Financial Support
    • Awards & Fellowships
    • Life Assistance
    • Career Preparation
    • Alumni Career Spotlights
    • How to Apply
  • Research
    • Research Faculty
    • Associated Research Faculty
    • Research Strengths
    • Centers, Instrumentation, & Resources
    • Faculty Awards
  • News & Events
    • News
    • Events Calendar
    • Seminars
    • Named Lectures
    • Discussion Groups & Journal Clubs
    • Annual GCDB Retreat
    • Annual Microbiology Retreat
    • Newsletters
  • Alumni & Giving
  • Search
  • Contact
  • Student Portal
  • Donate
  • News
  • Events Calendar
  • Seminars
  • Named Lectures
  • Discussion Groups & Journal Clubs
  • Annual GCDB Retreat
  • Annual Microbiology Retreat
  • Newsletters
  • Home
  • News & Events
  • News
  • 2019 News
  • Chemical compound found in essential oils improves wound healing, IU study finds

Chemical compound found in essential oils improves wound healing, IU study finds

Tuesday, December 17, 2019

Field of lavender in bloom.
Lavender. Photo by Annie Spratt on Unsplash

Indiana University researchers have discovered that a chemical compound found in essential oils improves the healing process in mice when it is topically applied to a skin wound—a finding that could lead to improved treatments for skin injuries in humans.

IU scientists also reported that skin tissue treated with the chemical compound, beta-carophyllene—which is found in lavender, rosemary and ylang ylang, as well as various herbs and spices such as black pepper—showed increased cell growth and cell migration critical to wound healing. They also observed increased gene expression of hair follicle stem cells in the treated tissue. The scientists did not find any involvement of the olfactory system in the wound healing.

Their research was published Dec. 16 in the journal PLOS ONE.

Sachiko Koyama.
Sachiko Koyama. Photo courtesy of Sachiko Koyama

"This is the first finding at the chemical-compound level showing improved wound healing in addition to changes in gene expression in the skin," said Sachiko Koyama, corresponding author on the paper, who, at the time of this research, was an associate scientist at the IU School of Medicine and is currently a visiting scientist in the IU College of Arts and Sciences' Department of Biology. "The way gene expression changed also suggests not only improved wound healing but also the possibility of less scar formation and a more full recovery.

"It's an example that essential oils work; however, it's not through our sense of smell."

Essential oils are natural, concentrated oils extracted from plants. Their use by humans dates back to ancient Egypt, but the scented oils have experienced a resurgence in popularity in the U.S. over the past few years, with many people using them for aromatherapy.

Koyama, whose original field of study is pheromones, said she wasn't interested in essential oils at first. The project started when she saw several students studying the wound healing process in mice in the Medical Sciences Program at the IU School of Medicine-Bloomington. Having previously worked in the IU College of Arts and Sciences' Department of Psychological and Brain Sciences, where scientists are working with cannabinoid receptors, Koyama knew that beta-caryophyllene activates not only olfactory receptors but also cannabinoid receptor 2 (CB2), which has anti-inflammatory impact when it is activated.

"In the wound healing process, there are several stages, starting from the inflammatory phase, followed by the cell proliferation stage and the remodeling stage," she said. "I thought maybe wound healing would be accelerated if inflammation was suppressed, stimulating an earlier switch from the inflammatory stage to the next stage."

This accelerated the wound healing process, she said, but the resulting change in gene expression indicates that the improved healing is not merely achieved through activation of the CB2 receptor.

"It's possibly more complicated," Koyama said. "Our findings suggest the involvements of some other routes in addition to CB2. I hope to clarify the mechanisms of action in the near future."

Although the study's results are promising, Koyama said she wouldn't recommend that people start treating their injuries with just any essential oils, as her research applies to a very specific chemical compound with known purity, diluted in a specific concentration.

"It's not very precise to use the essential oils themselves because there are differences," she said. "Even if you say you used lavender, when the lavender was harvested, where it was harvested, how it was stored—all of this makes a difference in the chemical composition."

Anna Purk stands next to her research poster.
Anna Purk was an undergraduate student in the IU School of Public Health-Bloomington at the time of this research. She is now a student at the IU School of Medicine. Photo courtesy of Sachiko Koyama

Koyama said further research is required to figure out how beta-carophyllene might be used to develop new treatments for skin wounds in humans. She said she hopes to better understand the mechanisms that accelerate the healing process and to find a combination of chemical compounds that could be used together to accelerate drug delivery and chemical stability, which is important for avoiding or suppressing allergic responses caused by oxidation of the chemical compounds.

"We still need thorough scientific studies at the chemical-compound level and also to test the combinations of these chemical compounds," Koyama said. "For example, there are studies showing that linalool—another compound found in lavender—can suppress anxiety through the olfactory system. There could be the best combinations of chemical compounds at specific ratios, and we might be able to do prescriptions of aroma chemical compounds, depending on the specific treatment goals.

"There are many things to test before we can start using it clinically, but our results are very promising and exciting; someday in the near future, we may be able to develop a drug and drug delivery methods using the chemical compounds found in essential oils."

Additional IU authors on the paper include Anna Purk and Anthony Mescher of the IU School of Medicine; and, in the IU College of Arts and Sciences, Manpreet Kaur of the Department of Psychological and Brain Sciences, Helena A. Soini and Milos V. Novotny of the Department of Chemistry and the Institute for Pheromone Research, Keith Davis of the Department of Biology, and C. Cheng Kao of the Department of Molecular and Cellular Biochemistry. Hiroaki Matsunami of Duke University also authored the paper.

This research was supported by the Office of the Vice Provost of Research at IU Bloomington through a Collaborative Research and Creative Activity Funding Award to Koyama. Purk and Kaur worked on the study as awardees of the Research Experience for Undergraduate Women scholarship from the IU Center of Excellence for Women in Technology.

This article is republished from Indiana University's News at IU Bloomington Health and Wellness.

Read the original article

  • Faculty + Staff Intranet

Department of Biology social media channels

  • Twitter
  • Facebook
  • College of Arts & Sciences
  • Department of Biology

The College of Arts & Sciences

Indiana University

Copyright © 2025 The Trustees of Indiana University

Accessibility | College Scorecard | Privacy Notice

  • About
    • Message from the Chair
    • Faculty
      • Tenured + Tenure-Track Faculty
      • Teaching Faculty
      • Research Scientists
      • Faculty Emeriti
      • Faculty Affiliates
    • Research Associates & Postdocs
    • Staff
    • Graduate Students
    • Administration
    • Offices & Centers
    • Diversity & Inclusion
      • DEI Committee
    • Outreach
      • K-12 Educators
        • Biology Summer Institute
      • K-12 Students
        • Holland Summer Science Programs
          • Jim Holland Summer Enrichment Program in Biology (SEP)
          • Jim Holland Summer Science Research Program (SSRP)
          • Jim Holland Research Initiative in STEM Education (RISE)
      • Lessons
      • Outreach Activities
      • Outreach Coordinators
    • History
      • Faculty Emeriti
      • Historical Materials
    • About Bloomington
  • Undergraduate
    • Biology
      • Biology Learning Goals
      • Biology B.S.
        • Areas of Concentration
          • Biology of Disease
          • Cell Biology and Molecular Genetics
          • Integrative and Organismal Biology
      • Biology B.A.
      • Biology Minor
    • Biotechnology
      • Biotechnology Learning Goals
        • Biotechnology BS Learning Goals
        • Biotechnology BA Learning Goals
        • Biotechnology Minor Learning Goals
      • Program Design & Resources
      • Biotechnology B.S.
      • Biotechnology B.A.
      • Biotechnology B.S./M.S.
      • Biotechnology Minor
      • Demand and Employment Analysis
    • Microbiology
      • Microbiology B.S.
      • Microbiology B.A.
      • Microbiology Minor
    • Molecular Life Sciences
    • Research & Teaching Opportunities
      • Research Programs
      • Biology X490 Independent Study
      • Undergraduate Teaching Assistant
    • Honors Program
    • Advising
    • Awards & Scholarships
    • Student Experience
    • Graduate & Professional Program Preparation
    • Career Preparation
  • Graduate
    • Evolution, Ecology, and Behavior Ph.D.
      • Steps to become EEB student
      • Curriculum
      • EEB Faculty
    • Genome, Cell, and Developmental Biology Ph.D.
      • Steps to become GCDB student
      • Curriculum
      • GCDB Faculty
    • Microbiology Ph.D.
      • Steps to become Microbiology student
      • Curriculum
      • Microbiology Faculty
    • Biotechnology M.S.
      • Program Plan + Curriculum
      • Financial Support
      • Biotechnology Faculty
    • Multidisciplinary & Affiliated Programs
    • Advising
    • Financial Support
    • Awards & Fellowships
    • Life Assistance
    • Career Preparation
    • Alumni Career Spotlights
    • How to Apply
  • Research
    • Research Faculty
    • Associated Research Faculty
    • Research Strengths
      • Behavior
      • Chromatin, chromosomes, and genome integrity
      • Developmental mechanisms and regulation in eukaryotic systems
      • Ecology
      • Eukaryotic cell biology, cytoskeleton, and signaling
      • Evolution
      • Genomics and bioinformatics
      • Microbial cell biology and environmental responses
      • Microbial interactions and pathogenesis
      • Plant molecular biology
      • Virology
    • Centers, Instrumentation, & Resources
      • Drosophila Research Resources
    • Faculty Awards
  • News & Events
    • News
    • Events Calendar
    • Seminars
    • Named Lectures
      • Distinguished Alumni Award Lecture
      • James P. Holland Lecture Series
      • Carlos O. Miller Lecture Series
      • Hermann J. Muller Award Lecture Series
      • Norman R. Pace Lecture Series
      • Tracy M. Sonneborn Lecture Series
      • Joan Wood Lecture Series
    • Discussion Groups & Journal Clubs
    • Annual GCDB Retreat
    • Annual Microbiology Retreat
      • Micro-lympics
      • Registration
    • Newsletters
      • BioNews Fall 2022
      • BioNews Archive
  • Alumni & Giving
  • Contact
  • Student Portal
    • Undergraduate
      • Biology
        • Biology B.S.
        • Biology B.A.
        • Biology Minor
      • Biotechnology
        • Biotechnology B.S.
        • Biotechnology B.A.
        • Biotechnology B.S./M.S.
        • Biotechnology Minor
      • Microbiology
        • Microbiology B.S.
        • Microbiology B.A.
        • Microbiology Minor
      • Molecular Life Sciences
      • Courses
        • Biology Exemption Exams
        • Course Scheduling
        • Course Evaluations
        • Biology X490 Independent Study
        • FAQs
      • Advising
      • Research Opportunities
      • Teaching Assistants
      • Honors Program
        • Eligibility
        • Honors Courses
        • Honors Thesis
        • Honors Faculty Advisors
        • How to Apply
      • Internships
    • Graduate
      • Evolution, Ecology, and Behavior Ph.D.
      • Genome, Cell, and Developmental Biology Ph.D.
      • Microbiology Ph.D.
      • Biotechnology M.S.
      • Multidisciplinary and Affiliated Programs
      • Courses
      • Transfer credits
      • Awards + funding
      • Financial Support
      • Teaching Support
      • Dissertation & Thesis Support
      • Services & Outreach
      • Submit News to Biology
      • Facilities & Resources
        • Computing Services
        • Constant Temperature Rooms
        • Dry Ice
        • Lactation Room
        • Room Reservations
          • All Rooms
          • Biology Bldg. 123
          • Biology Bldg. 248
          • Biology Bldg. A310
          • Biology Bldg. 422
          • Biology Bldg. 510
          • Myers Hall 115
          • Myers Hall 140
          • Myers Hall 209
          • Myers Hall 311
      • Student Academic Appointments
      • Bias incident reporting
      • Title IX incident reporting
    • Seminars
    • Ombudsperson
  • Donate

The College of Arts & Sciences