• Skip to Content
  • Skip to Main Navigation
  • Skip to Search

Indiana University Bloomington Indiana University Bloomington IU Bloomington

Open Search Menu

The College of Arts & Sciences

Department of Biology

  • Home
  • About
    • Message from the Chair
    • Faculty
    • Research Associates & Postdocs
    • Staff
    • Graduate Students
    • Administration
    • Offices & Centers
    • Diversity & Inclusion
    • Outreach
    • History
    • About Bloomington
  • Undergraduate
    • Biology
    • Biotechnology
    • Microbiology
    • Molecular Life Sciences
    • Research & Teaching Opportunities
    • Honors Program
    • Advising
    • Awards & Scholarships
    • Student Experience
    • Graduate & Professional Program Preparation
    • Career Preparation
  • Graduate
    • Evolution, Ecology, and Behavior Ph.D.
    • Genome, Cell, and Developmental Biology Ph.D.
    • Microbiology Ph.D.
    • Biotechnology M.S.
    • Multidisciplinary & Affiliated Programs
    • Advising
    • Financial Support
    • Awards & Fellowships
    • Life Assistance
    • Career Preparation
    • Alumni Career Spotlights
    • How to Apply
  • Research
    • Research Faculty
    • Associated Research Faculty
    • Research Strengths
    • Centers, Instrumentation, & Resources
    • Faculty Awards
  • News & Events
    • News
    • Events Calendar
    • Seminars
    • Named Lectures
    • Discussion Groups & Journal Clubs
    • Annual GCDB Retreat
    • Annual Microbiology Retreat
    • Newsletters
  • Alumni & Giving
  • Search
  • Contact
  • Student Portal
  • Donate
  • News
  • Events Calendar
  • Seminars
  • Named Lectures
  • Discussion Groups & Journal Clubs
  • Annual GCDB Retreat
  • Annual Microbiology Retreat
  • Newsletters
  • Home
  • News & Events
  • News
  • 2017 News
  • IU biologists create beetle with functional extra eye

IU biologists create beetle with functional extra eye

By: Kevin Fryling, News and Media Specialist, IU Bloomington

Friday, November 10, 2017

Beetle face with three eyes.
The creation of three-eyed beetles through a new technique developed at IU provides scientists a new way to investigate the genetic mechanisms responsible for the evolutionary emergence of new physical traits. Photo by Eduardo Zattara

'Three-eyed' insect could help reveal self-organizing mechanism behind the evolution of new complex traits.

On "Game of Thrones," a three-eyed raven holds the secrets of the past, present and future in a vast fantasy kingdom. But for real-world biologists, a "three-eyed beetle" may offer a true glimpse into the future of studying evolutionary development.

Using a simple genetic tool, IU scientists have intentionally grown a fully functional extra eye in the center of the forehead of the common beetle. Unraveling the biological mechanisms behind this occurrence could help researchers understand how evolution draws upon pre-existing developmental and genetic "building blocks" to create novel complex traits, or "old" traits in novel places.

The study's results appear in the journal of the Proceedings of the National Academy of Sciences. The work also provides deeper insights into an earlier experiment that accidentally produced an extra eye as part of a study to understand how the insect head develops.

"Developmental biology is beautifully complex in part because there's no single gene for an eye, a brain, a butterfly's wing or a turtle's shell," said Armin P. Moczek, a professor in the IU Bloomington College of Arts and Sciences' Department of Biology. "Instead, thousands of individual genes and dozens of developmental processes come together to enable the formation of each of these traits.

"We've also learned that evolving a novel physical trait is much like building a novel structure out of Legos, by re-using and recombining 'old' genes and developmental processes within new contexts."

As a consequence, the evolution of novel features often requires many fewer genetic changes than biologists originally thought.

But unlike rearranging and combining toy plastic bricks to form a new structure, Moczek said it's unclear what biological mechanisms guide the construction of new physical traits under some circumstances but not others.

Armin Moczek.
Armin Moczek. Photo by Marc Lebryk

"You can make new things over and over or in new places using the same old set of 'bricks,'" he said. "But in Legos, we know the rules of assembly: which pieces go together and which things don't. In biology, we still struggle to understand the respective counterparts."

One of the ways that scientists have sought to get a clearer view of this process is by coaxing the growth of "ectopic" organs—or organs that form on the wrong part of the body. Early work in the field has focused on the formation of fruit fly eyes in the wrong place, such as on the wing or leg. However, these experiments required activating major regulatory genes in the new location, a technique that is limited to only a few study organisms. The resulting "eyes" were also never fully functional.

By contrast, the new IU-led study reports on the formation of an extra functional eye—technically, a "fusion" of two sets of extra eye—following the knockdown of a single gene, a technique widely available to scientists in most organisms. The unexpected formation of a complex, functional eye in a novel location in the process is "a remarkable example of the ability of developmental systems to channel massive perturbations toward orderly and functional outcomes," Moczek said.

To create a fully functional eye in the center of a beetle's head, Moczek's team deactivated a single gene called orthodenticle, or odt, which their research has previously shown to play a role in instructing the formation of the head during development.

"This study experimentally disrupts the function of a single, major gene," Moczek said. "And, in response to this disruption, the remainder of head development reorganizes itself to produce a highly complex trait in a new place: a compound eye in the middle of the head.

"Moreover, the darn thing actually works!"

To confirm the eye was a true extra eye, the IU team conducted multiple tests to prove the structure had the same cell types, expressed the same genes, grew proper nerve connections and elicited the same behavioral response as a normal eye. What makes the results so exciting—beyond the eye's Frankenstein novelty—is the relatively simple genetic technique used to achieve the gene knockdown, said IU postdoctoral researcher Eduardo E. Zattara, who is lead author on the study.

Eduardo Zattara.
Eduardo Zattara. Photo by Eric Rudd, IU Communications

Moczek said the findings also go beyond this application to help address fundamental questions in development, evolution and medicine. For example, understanding how complex organs organize their growth and integration into the body are central challenges medical sciences must overcome to develop artificial organs for research and transplantation.

"The use of ectopic eyes is a highly accessible paradigm to study all of this, across many types of organisms," Zattara said. "We regard this study as really opening the door to new avenues of investigation in multiple disciplines."

Additional authors on the study are Anna L. M. Macagno, a research associate, and Hannah A. Busey, an undergraduate student, in the IU Bloomington Department of Biology.

This study was supported in part by the National Science Foundation.

See also: What functional ectopic compound eyes can teach us about the role of context in development and evolution
  • Faculty + Staff Intranet

Department of Biology social media channels

  • Twitter
  • Facebook
  • College of Arts & Sciences
  • Department of Biology

The College of Arts & Sciences

Indiana University

Copyright © 2025 The Trustees of Indiana University

Accessibility | College Scorecard | Privacy Notice

  • About
    • Message from the Chair
    • Faculty
      • Tenured + Tenure-Track Faculty
      • Teaching Faculty
      • Research Scientists
      • Faculty Emeriti
      • Faculty Affiliates
    • Research Associates & Postdocs
    • Staff
    • Graduate Students
    • Administration
    • Offices & Centers
    • Diversity & Inclusion
      • DEI Committee
    • Outreach
      • K-12 Educators
        • Biology Summer Institute
      • K-12 Students
        • Holland Summer Science Programs
          • Jim Holland Summer Enrichment Program in Biology (SEP)
          • Jim Holland Summer Science Research Program (SSRP)
          • Jim Holland Research Initiative in STEM Education (RISE)
      • Lessons
      • Outreach Activities
      • Outreach Coordinators
    • History
      • Faculty Emeriti
      • Historical Materials
    • About Bloomington
  • Undergraduate
    • Biology
      • Biology Learning Goals
      • Biology B.S.
        • Areas of Concentration
          • Biology of Disease
          • Cell Biology and Molecular Genetics
          • Integrative and Organismal Biology
      • Biology B.A.
      • Biology Minor
    • Biotechnology
      • Biotechnology Learning Goals
        • Biotechnology BS Learning Goals
        • Biotechnology BA Learning Goals
        • Biotechnology Minor Learning Goals
      • Program Design & Resources
      • Biotechnology B.S.
      • Biotechnology B.A.
      • Biotechnology B.S./M.S.
      • Biotechnology Minor
      • Demand and Employment Analysis
    • Microbiology
      • Microbiology B.S.
      • Microbiology B.A.
      • Microbiology Minor
    • Molecular Life Sciences
    • Research & Teaching Opportunities
      • Research Programs
      • Biology X490 Independent Study
      • Undergraduate Teaching Assistant
    • Honors Program
    • Advising
    • Awards & Scholarships
    • Student Experience
    • Graduate & Professional Program Preparation
    • Career Preparation
  • Graduate
    • Evolution, Ecology, and Behavior Ph.D.
      • Steps to become EEB student
      • Curriculum
      • EEB Faculty
    • Genome, Cell, and Developmental Biology Ph.D.
      • Steps to become GCDB student
      • Curriculum
      • GCDB Faculty
    • Microbiology Ph.D.
      • Steps to become Microbiology student
      • Curriculum
      • Microbiology Faculty
    • Biotechnology M.S.
      • Program Plan + Curriculum
      • Financial Support
      • Biotechnology Faculty
    • Multidisciplinary & Affiliated Programs
    • Advising
    • Financial Support
    • Awards & Fellowships
    • Life Assistance
    • Career Preparation
    • Alumni Career Spotlights
    • How to Apply
  • Research
    • Research Faculty
    • Associated Research Faculty
    • Research Strengths
      • Behavior
      • Chromatin, chromosomes, and genome integrity
      • Developmental mechanisms and regulation in eukaryotic systems
      • Ecology
      • Eukaryotic cell biology, cytoskeleton, and signaling
      • Evolution
      • Genomics and bioinformatics
      • Microbial cell biology and environmental responses
      • Microbial interactions and pathogenesis
      • Plant molecular biology
      • Virology
    • Centers, Instrumentation, & Resources
      • Drosophila Research Resources
    • Faculty Awards
  • News & Events
    • News
    • Events Calendar
    • Seminars
    • Named Lectures
      • Distinguished Alumni Award Lecture
      • James P. Holland Lecture Series
      • Carlos O. Miller Lecture Series
      • Hermann J. Muller Award Lecture Series
      • Norman R. Pace Lecture Series
      • Tracy M. Sonneborn Lecture Series
      • Joan Wood Lecture Series
    • Discussion Groups & Journal Clubs
    • Annual GCDB Retreat
    • Annual Microbiology Retreat
      • Micro-lympics
      • Registration
    • Newsletters
      • BioNews Fall 2022
      • BioNews Archive
  • Alumni & Giving
  • Contact
  • Student Portal
    • Undergraduate
      • Biology
        • Biology B.S.
        • Biology B.A.
        • Biology Minor
      • Biotechnology
        • Biotechnology B.S.
        • Biotechnology B.A.
        • Biotechnology B.S./M.S.
        • Biotechnology Minor
      • Microbiology
        • Microbiology B.S.
        • Microbiology B.A.
        • Microbiology Minor
      • Molecular Life Sciences
      • Courses
        • Biology Exemption Exams
        • Course Scheduling
        • Course Evaluations
        • Biology X490 Independent Study
        • FAQs
      • Advising
      • Research Opportunities
      • Teaching Assistants
      • Honors Program
        • Eligibility
        • Honors Courses
        • Honors Thesis
        • Honors Faculty Advisors
        • How to Apply
      • Internships
    • Graduate
      • Evolution, Ecology, and Behavior Ph.D.
      • Genome, Cell, and Developmental Biology Ph.D.
      • Microbiology Ph.D.
      • Biotechnology M.S.
      • Multidisciplinary and Affiliated Programs
      • Courses
      • Transfer credits
      • Awards + funding
      • Financial Support
      • Teaching Support
      • Dissertation & Thesis Support
      • Services & Outreach
      • Submit News to Biology
      • Facilities & Resources
        • Computing Services
        • Constant Temperature Rooms
        • Dry Ice
        • Lactation Room
        • Room Reservations
          • All Rooms
          • Biology Bldg. 123
          • Biology Bldg. 248
          • Biology Bldg. A310
          • Biology Bldg. 422
          • Biology Bldg. 510
          • Myers Hall 115
          • Myers Hall 140
          • Myers Hall 209
          • Myers Hall 311
      • Student Academic Appointments
      • Bias incident reporting
      • Title IX incident reporting
    • Seminars
    • Ombudsperson
  • Donate

The College of Arts & Sciences