It’s with great sadness that I write to inform you that our dear colleague and friend Rudy Raff passed away on January 5, 2019. As most of you know, Rudy was a faculty member in Biology at IU since 1971, starting as an assistant professor and rising quickly through the ranks to a James H. Rudy Professor of Biology in 2000 and Distinguished Professor in 2002, until his retirement as Distinguished Professor Emeritus in 2018.
In memory of Rudy Raff
Rudy was a pioneer of the field now known as evo-devo and his work received numerous awards and honors, including the pioneer award of the PanAmerican Society of Evolutionary Developmental Biology and a Guggenheim Fellowship. He was elected to both the American Association for the Advancement of Science and the American Academy of Arts and Sciences.
Perhaps more important than his scientific and scholarly accomplishments (and there were indeed many), Rudy was a wonderful colleague, friend, and mentor to many of us at IU, and he was vital to the growth and success of the department over the last half-century. In fact, I recall very fondly my first scientific discussion with him during my job interview back in 1999 and was made a better scientist and scholar by subsequent interactions with Rudy over the last 20 years. The loss is substantial and Rudy will be missed by so many of us at IU, along with his colleagues, collaborators, and mentees around the world.
Our hearts and thoughts go out to his wife Beth Raff and the entire extended Raff family.
Gregory E. Demas, PhD
Professor and Chair
Department of Biology
Memorial service
A memorial service is planned for Professor Emeritus Rudy Raff on Saturday, March 23, 2019, at 1pm at Day & Deremiah-Frye Funeral Home (4150 E. 3rd St., Bloomington, IN). Information about Rudy Raff, including how to make donations in his memory, can be found at Dignity Memorial.
A very nice tribute to Rudy’s career was published in Nature Ecology & Evolution.
Please join us in celebrating Rudy’s life and science.
Professor of Biology Armin Moczek composed a tribute to Rudy Raff on the occasion of his retirement in 2018.
More about Rudy Raff
The following information about Distinguished Professor Emeritus Rudy Raff was extracted from his IU Biology faculty profile.
Education
Ph.D., Duke University, 1967
Postdoctoral Fellow: National Naval Medical Center, 1967-69; MIT, 1969-71
Awards and Honors
- Distinguished Career Award, Geological Society of America, Geobiology and Geomicrobiology Division
- Director, Indiana Molecular Biology Institute
- Editor in Chief, Evolution & Development
- Guggenheim Fellow
- Fellow of the American Academy of Arts and Sciences
- Fellow of the American Association for the Advancement of Science
- Alexander Kowalevsky Medal, St. Petersburg Society of Naturalists
- Daniel Giraud Elliot Medal, National Academy of Sciences USA
- Sewall Wright Award, American Society of Naturalists
Research
Evolutionary developmental biology is the study of how developmental processes influence the course of evolution. The link lies in the fact that body form evolves over long time periods, but morphology arises each generation in the development of an individual. In a collaborative effort with Beth Raff, we study several aspects of this problem at the level of embryonic and larval development. Our research focuses on a pair of closely related Australian sea urchins that allow us to compare the evolution of developmental mechanisms of two closely related species with dramatically different modes of development. Part of the work is done in the School of Biological Sciences at the University of Sydney.
Evolution of early development
The primitive mode of development for sea urchins is via a feeding larva called a pluteus. This larva has arms used in feeding. After a period of a few weeks of feeding, a tiny sea urchin grows within, and is released by metamorphosis. One of our species, Heliocidaris tuberculata develops in this way. Its sister species, H. erythrogramma, has omitted the feeding larva and within 3-4 days produces a tiny sea urchin through direct development. We are studying the evolution of regulatory changes that underlie this radical shift in development. Studies of regulators of axial development have allowed us to understand how some of the dramatic change in larval shape has evolved. The use of cross species hybrids between these species and genomic methods is revealing how timing of developmental events has become reorganized.
Larval origins
The earliest animals evidently developed directly. Thus the elaborate larvae of marine animals with their body plans distinct from those of their adults did not arise until after the great radiation of animals was well under way. We have been studying distinctly larval structures to document gene co-option in the evolution of larvae. We have also been trying to reconstruct the evolutionary intermediates through which feeding larvae evolve into non-feeding, direct developing forms. A developmental intermediate represented by a facultative-feeding sea urchin from Panama has been crucial to understanding early selective steps in the process.
How embryos fossilize
Marine embryos would seem unlikely to have left fossils. However, surprising and well preserved fossil embryos occur in late Precambrian and Cambrian phosphorites. These give insights into the originis of marine larvae and life histories. We are collaborating with other investigators in establishing mechanisms of embryo decay and preservation using large Australian sea urchin embryos as analogs of early embryos. We have established the major finding that the blocking of autolysis is a critical step in the process. Current studies are examining the roles of bacteria in fossilization.