- Postdoctoral Fellow, Harvard Medical School, 2009-2016
- Postdoctoral Fellow, University of Oxford, 2007-2009
- D.Phil., University of Oxford, UK, 2007
Xindan Wang
Associate Professor, Biology
(she/her/hers)
Associate Professor, Biology
(she/her/hers)
Biology Bldg. 225
Wang Lab website
Our lab is interested in chromosome dynamics in bacteria. Using Bacillus subtilis as a model organism, we combine genetic, molecular, cytological, and biochemical approaches to study how the chromosome is organized and segregated during the cell cycle. Our research primarily focuses on a set of highly conserved factors in chromosome biology, including the parABS partitioning system and the SMC condensin complex. Taking the many strengths of studying bacteria, our goal is to uncover general principles of chromosome organization and segregation in living organisms. Specific research directions include:
Chromatin, Chromosomes, and Genome Integrity
Genomics and Bioinformatics
Microbial Cell Biology and Environmental Responses
Microbial Interactions and Pathogenesis
Liao, Q., Ren, Z., Wiesler, E.E., Fuqua, C., Wang, X. (2022) A dicentric bacterial chromosome requires XerC/D site-specific recombinases for resolution. Current Biology. 2022 Jun 28:S0960-9822(22)01012-0. doi: 10.1016/j.cub.2022.06.050
Karaboja, X., Wang, X. (2022) HBsu is required for the initiation of DNA replication in Bacillus subtilis. J Bacteriol. 2022 May 12:e00119-22 doi:10.1128/jb.00119-22
Ren, Z., Liao, Q., Barton, I.S., Wiesler, E.E., Fuqua, C., Wang, X. (2022) Centromere interactions promote the maintenance of the multipartite genome in Agrobacterium tumefaciens. mBio. 2022 Jun 28;13(3):e0050822. doi: 10.1128/mbio.00508-22
Ren, Z., Liao, Q., Karaboja, X., Barton, I.S., Schantz, E.G., Mejia-Santana, A., Fuqua, C., Wang, X. (2022) Conformation and dynamic interactions of the multipartite genome in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A. 119 (6) e2115854119
Brandão, H.B., Ren, Z., Karaboja, X., Mirny, L.A., Wang, X. (2021) DNA-loop extruding SMC complexes can traverse one another in vivo. Nat Struct Mol Biol. 28: 642-651.
Karaboja, X., Ren, Z., Brandão, H.B., Paul, P., Rudner, D.Z., Wang, X. (2021) XerD unloads bacterial SMC complexes at the replication terminus. Molecular Cell. 81, 1–11. doi: 10.1016/j.molcel.2020.12.027
Brandão, H.B., Paul, P., van del Berg, A.A., Rudner, D.Z., Wang, X., Mirny, L.A., 2019. RNA polymerases as moving barriers to condensin loop extrusion. Proc Natl Acad Sci U S A. pii: 201907009. doi: 10.1073/pnas.1907009116
Wang, X., Hughes, A.C., Brandão, H.B., Walker, B., Lierz, C., Cochran, J.C., Oakley, M.G., Kruse, A.C., Rudner, D.Z. (2018) In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex. Mol Cell. 71, 1-7.
Wang, X., Brandão H.B., Le, T.B., Laub, M.T., Rudner, D.Z. (2017) Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science. 03 Feb 2017: Vol. 355, Issue 6324, pp. 524-527.