reproduction, chromosome replication and the structure and function of chromosomes and genes.

To address these interests, he has focused his studies on ciliated protozoa. These organisms display bizarre features that make them particularly useful to study problems pertaining to the organization of DNA sequences in a chromosome and in individual genes. During each life cycle, ciliated protozoa define each gene by cutting it out of the chromosome and eliminating all DNA sequences that are not genes, and then adding telomeres to each gene. These manipulations that the organism carries out on its own genome provide the opportunity to study a group of interrelated phenomena about DNA, including the role of gene scrambling in evolution, sequence-specific cutting and splicing of DNA, telomere synthesis, DNA replication, arrangement of genes and other sequences in chromosomes, DNA transcription, and control of gene copy number. Dr. Prescott’s work has contributed key insights into all of these phenomena.

Dr. Prescott is also noted for his mentoring of undergraduate researchers. Prescott states "I like working with students in the lab. It's very refreshing. Teaching in the lab is the most important kind of teaching I do. Socratic teaching is, in my view, the best way, and I can do that in the lab." Lab teaching, he says, teaches students to think, to take a hypothesis, test it, conduct the procedures, analyze the data, and apply the data to the original hypothesis. "It's a process of learning to think."

Oxytricha fallax